Paper by Joshua S. Gans: “New generative artificial intelligence (AI) models, including large language models and image generators, have created new challenges for copyright policy as such models may be trained on data that includes copy-protected content. This paper examines this issue from an economics perspective and analyses how different copyright regimes for generative AI will impact the quality of content generated as well as the quality of AI training. A key factor is whether generative AI models are small (with content providers capable of negotiations with AI providers) or large (where negotiations are prohibitive). For small AI models, it is found that giving original content providers copyright protection leads to superior social welfare outcomes compared to having no copyright protection. For large AI models, this comparison is ambiguous and depends on the level of potential harm to original content providers and the importance of content for AI training quality. However, it is demonstrated that an ex-post `fair use’ type mechanism can lead to higher expected social welfare than traditional copyright regimes…(More)”.
How to contribute:
Did you come across – or create – a compelling project/report/book/app at the leading edge of innovation in governance?
Share it with us at info@thelivinglib.org so that we can add it to the Collection!
About the author
Get the latest news right in you inbox
Subscribe to curated findings and actionable knowledge from The Living Library, delivered to your inbox every Friday
Related articles
citizen engagement
Making Civic Trust Less Abstract: A Framework for Measuring Trust Within Cities
Posted in June 5, 2025 by Stefaan Verhulst
artificial intelligence
The AI Policy Playbook
Posted in June 5, 2025 by Stefaan Verhulst
DATA
Europe’s dream to wean off US tech gets reality check
Posted in June 5, 2025 by Stefaan Verhulst