Paper by Cass R. Sunstein and Jared Gaffe: “People are said to show “algorithm aversion” when (1) they prefer human forecasters or decision-makers to algorithms even though (2) algorithms generally outperform people (in forecasting accuracy and/or optimal decision-making in furtherance of a specified goal). Algorithm aversion also has “softer” forms, as when people prefer human forecasters or decision-makers to algorithms in the abstract, without having clear evidence about comparative performance. Algorithm aversion is a product of diverse mechanisms, including (1) a desire for agency; (2) a negative moral or emotional reaction to judgment by algorithms; (3) a belief that certain human experts have unique knowledge, unlikely to be held or used by algorithms; (4) ignorance about why algorithms perform well; and (5) asymmetrical forgiveness, or a larger negative reaction to algorithmic error than to human error. An understanding of the various mechanisms provides some clues about how to overcome algorithm aversion, and also of its boundary conditions…(More)”.
How to contribute:
Did you come across – or create – a compelling project/report/book/app at the leading edge of innovation in governance?
Share it with us at info@thelivinglib.org so that we can add it to the Collection!
About the author
Get the latest news right in you inbox
Subscribe to curated findings and actionable knowledge from The Living Library, delivered to your inbox every Friday
Related articles
INSTITUTIONAL INNOVATION
Why PeaceTech must be the next frontier of innovation and investment
Posted in June 18, 2025 by Stefaan Verhulst
artificial intelligence
Sharing trustworthy AI models with privacy-enhancing technologies
Posted in June 17, 2025 by Stefaan Verhulst
INSTITUTIONAL INNOVATION
2025 State of the Digital Decade
Posted in June 17, 2025 by Stefaan Verhulst