Collection
Share:

The Role of Big Data Analytics in Predicting Suicide

Chapter by Ronald C. Kessler et al: “…reviews the long history of using electronic medical records and other types of big data to predict suicide. Although a number of the most recent of these studies used machine learning (ML) methods, these studies were all suboptimal both in the features used as predictors and in the analytic approaches used to develop the prediction models. We review these limitations and describe opportunities for making improvements in future applications.

We also review the controversy among clinical experts about using structured suicide risk assessment tools (be they based on ML or older prediction methods) versus in-depth clinical evaluations of needs for treatment planning. Rather than seeing them as competitors, we propose integrating these different approaches to capitalize on their complementary strengths. We also emphasize the distinction between two types of ML analyses: those aimed at predicting which patients are at highest suicide risk, and those aimed at predicting the treatment options that will be best for individual patients. We explain why both are needed to optimize the value of big data ML methods in addressing the suicide problem….(More)”.

See also How Search Engine Data Enhance the Understanding of Determinants of Suicide in India and Inform Prevention: Observational Study.

Share
How to contribute:

Did you come across – or create – a compelling project/report/book/app at the leading edge of innovation in governance?

Share it with us at info@thelivinglib.org so that we can add it to the Collection!

About the author

Get the latest news right in you inbox

Subscribe to curated findings and actionable knowledge from The Living Library, delivered to your inbox every Friday

Related articles