Paper by Guo Xintong, Wang Hongzhi, Yangqiu Song, and Gao Hong in Expert Systems with Applications: “Crowdsourcing allows large-scale and flexible invocation of human input for data gathering and analysis, which introduces a new paradigm of data mining process. Traditional data mining methods often require the experts in analytic domains to annotate the data. However, it is expensive and usually takes a long time. Crowdsourcing enables the use of heterogeneous background knowledge from volunteers and distributes the annotation process to small portions of efforts from different contributions. This paper reviews the state-of-the-arts on the crowdsourcing for data mining in recent years. We first review the challenges and opportunities of data mining tasks using crowdsourcing, and summarize the framework of them. Then we highlight several exemplar works in each component of the framework, including question designing, data mining and quality control. Finally, we conclude the limitation of crowdsourcing for data mining and suggest related areas for future research.
How to contribute:
Did you come across – or create – a compelling project/report/book/app at the leading edge of innovation in governance?
Share it with us at info@thelivinglib.org so that we can add it to the Collection!
About the author
Get the latest news right in you inbox
Subscribe to curated findings and actionable knowledge from The Living Library, delivered to your inbox every Friday
Related articles
INSTITUTIONAL INNOVATION
Why PeaceTech must be the next frontier of innovation and investment
Posted in June 18, 2025 by Stefaan Verhulst
artificial intelligence
Sharing trustworthy AI models with privacy-enhancing technologies
Posted in June 17, 2025 by Stefaan Verhulst
INSTITUTIONAL INNOVATION
2025 State of the Digital Decade
Posted in June 17, 2025 by Stefaan Verhulst